
1 ANALYSIS 

1.1 ASAP and the Rudiments of Gaussian Beam Decomposition 
The Retro-reflection analysis performed on the laser train of the EOTS uses a program 
distributed by the Breault Research Organization (BRO).  ASAP is different from other 
optical programs in that the optical components are entered in as physical entities, and 
ray tracing is nonsequential.  A feature of this program different from other optical 
programs such as Code V and Zemax, is light is paraxially propagated using a parabasal 
ray, and the field reconstructed via Gaussian Decomposition. 
 
Code V’s method for calculating diffraction images in an optical system requires that a 
wave front be constructed using the optical path differences (OPD’s) of hundreds of 
rays.  This method is accomplished by interpolating the wave front using the OPD’s at 
the exit pupil and either Fourier Transforming or using the vector diffraction kernel to get 
the resultant phase and amplitude of the field. 
 
Since the electromagnetic field is linear, it obeys the principle of superposition, wherein 
an arbitrary field incident on a system can be decomposed into a set of elementary 
fields.  The concept of decomposition, propagation, and recombination is what is done in 
the angular spectrum technique.  The field incident on a system is decomposed into a 
set of plane waves, (via the Fourier Transform), propagated, using a transfer function, 
and then recombined (via the Inverse Fourier Transform).  A predominant problem with 
this technique is that when the field is under sampled below the Nyquist Frequency, 
aliasing occurs.  In Gaussian decomposition, the field is decomposed into a set of 
Gaussian fields and the parabasal ray is easily propagated through the system using a 
paraxial transfer function.  The fields of the set of parabasal rays are then simply 
recombined using superpositioning of the fields.  A benefit of this method is that 
Gaussian beams, when propagated through an optical system, do not change their 
mathematical form.  Thus, when recombining the propagated fields, the problems of 
aliasing are eliminated.  One draw back of this technique is that if the parabasal ray 
deviates from the paraxial ray (i.e. becomes highly divergent) then inaccurate results can 
occur, requiring the resultant parabasal ray grid to be decomposed into a set of rays of 
finer resolution and lower divergence. 
 
Derivation of the Parabasal Ray     
 
The derivation of the parabasal ray is taken directly out of Verdeyen1, where the wave 
equation given in equation (1) is sighted as the fundamental equation for propagation of 
Gaussian beams in free space, and has the same basic form as the time-dependent 
Schrodinger equation, 
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where the subscript (t) designates the transverse mode of the field.  To keep the 
mathematics to a minimum, we seek a solution that is cylindrically symmetric.  Therefore 



wave equation in equation (1) is re-expressed in cylindrical coordinate by expanding the 
Laplancian of the equation in terms of the radius.  Thus, the form of equation (1) 
becomes that given in equation (2). 
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The standard method in seeking a solution to the partial differential equation (PDQ) 
given in (2) is to solve it as a variable separable.  An alternate method is to select a 
standard form of the solution and then force the unknown coefficients or functions to fit 
the equation.  Thus the standard form for a field propagating in free space is given in 
equation (3), 
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where the subscript (0) indicates the fundamental form of the transverse field.  The 
objective in seeking a solution to the partial differential equation of this type, is to reduce 
the partial differential into a set ordinary differential equations (ODE) for the unknown 
functions P(z) and q(z).  
 
Thus, after substituting all appropriate derivatives of the function ))(),((0 zqzPψ  into the 
PDE and grouping the terms of (r) together, we get the expression given in equation (4) 
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For the assumed form of ))(),((0 zqzPψ to be a solution, every factor containing a power 
of (r) must vanish or become equal to zero.  This yields the two following ODE’s given in 
equations (5) and (6). 
 

1=
dz
dq

    (5) 

 

( )zq
j

dz
dP −

=    (6) 

 
The two ODE’s are decoupled from each other, and can be solved as two independent 
ODE’s.  The solution to the first differential equation if solved as a variable separable 
yields the trivial solution given in equation (7), 
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where 0q  is the value of ( )zq  at z=0. 
 



Assume q(z) to be complex, this implies that z is real, and any real part in the way 0q  
only constitutes a shift in the spatial coordinates.  To absorb the real part of the equation 
we simply start the coordinate at z=0 and let 0q  be imaginary (i.e. 00 jzq = ).  Rewriting 
equation (7) in terms of z yields the expression given in equation (8). 
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If equation (8) is substituted into equation (3) and letting z=0, we get the expression of 

0ψ  at z=0 yielding the results given in equation (9). 
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For the value of kzr 02=  the amplitude of the field falls from 1 to 1/e.  This quantity 

is a scale factor for the transverse radius of the field and is denoted as the variable ( 0w ), 
if we substituted the value of ( 0w ) in place of (r) we find an expression relating (z0) to 
( 0w ) which is given in equation (10) 
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At any point along the propagation axis, the value of (q) changes according to 
( ) 0qzzq += .  The reciprocal of the q(z) is of interest.  Therefore we examine 1/ q(z) 

which is expressed in equation (11). 
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Substitution of equation (11) into equation (3) yields )),(( 00 zzzP +ψ  as given in 
equation (12). 
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We realize that the term multiplying r2 in the first exponential factor given in equation (12) 
is a measure of the spread of the beam, which is now expressed as a function of (z).  
Therefore we obtain the function w(z) for the spread of the beam as a function of (z) 
given in equation (13). 
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The term multiplying r2 in the second exponential factor given in equation (12) is a 
measure of the radius of curvature of the field expressed as a function of z.  Thus we get 
the expression for R(z) given in equation (14). 
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Thus we have all the key mathematical components for defining the parabasal ray, 
which are shown in Figure 1.  The function ( )zw2  defines the size of the waist of the 
parabasal ray propagating in free space as a function of (z), and ( )zR  defines the 
curvature of the field at as a function of (z). 
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Figure 1 – Parabasal Ray Set 
 
 



 
Gaussian Decomposition 
 
To illustrate the principles of Gaussian decomposition, a Mathematical Analog of 
reconstruction of the field for the plane wave diffraction through a slit is presented.  The 
standard Linear Systems Analysis of slit diffraction (via the Fourier Transform) is 
compared to a slit composed of a set of Gaussian fields.  
 
In the following example we choose a slit of unit height and unit width.  The slit is 
mathematically represented with the rectangle function of unit amplitude and width, 
given in equation (15). 
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In order to get the amplitude of the field we apply the Forward Fourier Transform 

( ){ }xΠℑ  which is given in equation (16). 
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Using the real part of the last integral yields equation (17). 
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In applying Gaussian decomposition to the slit, a set of super positioned Gaussian 
functions denote as g(x) are added together to form the slit function specified by the 
boundary conditions predicated by ( )xΠ .  We define the Gaussian field function in 
equation (18), 
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 where, 0w  is radius at e1  of the amplitude of the field.  
 
In order to apply the superpositioning to ( )xg we define ( )sxcomb , which is a set of 
delta functions equally spaced by (s).  We then multiply the comb function by ( )xΠ in 
order to restrict the function over the boundary conditions predicated by the slit.  The 
product of these two equations is defined in equation (19), 
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where { }mn 2,...4,2∈  is the number of sampled points, and  s=1/n  
   
The composed slit function is constructed by the convolution of g(x) and 

)/( sxcombslit given in equation (20) 
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Figure 2 shows the synthetically composed Gaussian slit function along with ( )xΠ .  The 
slit function is the result of the superpositioning of several Gaussian fields separated by 
the distance (s). 
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Figure 2 – Gaussian Composite Slit Function 

 
 
To get the amplitude of the resulting diffraction pattern, we again apply the Forward 
Fourier Transform on the slit function ( )xSL  which yields equation (21). 
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By adding the two exponents given in equation (21) together and expanding their terms 
we get the following relationship given in equation (22). 
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By applying the integral identity given (23) to the right side of equation (22) yields 
equation (24) 
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By expanding the imaginary component of the exponent into its Euler components and 
only using the real part of the expression we arrive at our final solution, given in equation 
(25) 
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In Figure 3 sinc(πυ) is compared to ( )[ ]xSLℑ  .  The slit function SL(x) was constructed 
with a set of 32 superposition Gaussian fields, separated by parameter s=0.031 and a 
waist w0=0.017 
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Figure 3 – Comparison of sinc(πυ) and ( )[ ]xSLℑ  

 
 

The preceding mathematical analog demonstrates the principles of Gaussian 
decomposition and reconstruction, but should not be confused with the internal kernel 
used by ASAP, marketed by BRO or FRED marketed by Photon Engineering, which are 
stray light analysis programs specifically designed to propagate fields via Gaussian 
decomposition.  These programs propagate Gaussian beams by tracing the components 
of the parabasal ray geometrically and paraxially.  The base ray of the parabasal bundle 
is traced exactly.  The waist rays and divergence rays are traced using a paraxial 
transfer function.  By knowing the position of the waist rays and divergence rays relative 
to the base ray, the corresponding amplitude and phase for the Gaussian beam is 
reconstructed.  Therefore, for a grid of parabasal rays traced though an optical system, 



the phase and amplitude of the field exiting an optical system is not recombined using 
the Fourier Transform, but is recombined using the kernel intrinsic to the program that 
reconstructs the optical field which has taken into account all aberrations and diffraction 
effects of the optical system, and the Wavefront of the field is composed using Huygens 
principle for the superpositioning of spherical wavefronts. 
 


